12405

.Построить гистограмму относительных частот.

Контрольная

Найдем объем выборки . Найдем эмпирическую функцию распределения: , – число вариант меньших , – объем выборки. Построим ее график Найдем числовые характеристики выборки Найдем среднее арифметическое . Дисперсию найдем по формуле: .

2013-08-13

264.12 KB

0 чел.


Чтобы скачать работу - расскажи о ней в социальной сети с помощью кнопок.

Задача 1

1. Построить гистограмму относительных частот.

2. Найти эмпирическую функцию распределения и построить ее график.

3. Найти числовые характеристики выборки: выборочное среднее, выборочную дисперсию, выборочное среднее квадратическое отклонение.

4. Найти точечные оценки параметров нормального распределения (предполагается, что исследуемая величина имеет нормальное распределение), записать плотность вероятности и функцию распределения.

5. Проверить согласие эмпирической функции распределения с модельной нормальной функцией распределения при помощью критерия   (Пирсона) (уровень значимости  = 0,05).

6. Найти доверительный интервал для математического ожидания (доверительную вероятность принять равной 0,95).

Даны результаты измерения объемного выхода (в %) коротких досок (1-1,5 м) из бревен листовых пород.

,%

1-1,1

1,1-1,2

1,2-1,3

1,3-1,4

1,4-1,5

7

20

44

21

8

Решение.

Найдем объем выборки .

Запишем частичные интервалы, а также частоты в них.

интервал

1-1,1

1,1-1,2

1,2-1,3

1,3-1,4

1,4-1,5

частота

7

20

44

21

8

Относительная частота

Построим гистограмму.

2. Найдем эмпирическую функцию распределения: ,

– число вариант меньших ,  – объем выборки.

Построим ее график

Найдем числовые характеристики выборки

Найдем среднее арифметическое .

Дисперсию найдем по формуле: .

Можно воспользоваться формулой

Полученные данные сведем в таблицу.

[xi; xi+1)

середина интервала

частота

1

[1;

1,1)

1,05

7

7,35

0,2885

2

[1,1;

1,2)

1,15

20

23

0,2122

3

[1,2;

1,3)

1,25

44

55

0,0004

4

[1,3;

1,4)

1,35

21

28,35

0,1976

5

[1,4;

1,5]

1,45

8

11,6

0,3105

100

125,3

1,0091

Таким образом имеем: , .

Среднее квадратическое отклонение .

5) Вид гистограммы и полигона относительных частот напоминает нормальную кривую. Поэтому, можно предположить, что распределение является нормальным.

7) Плотность вероятности нормального распределения имеет вид

Найдем точеные оценки параметров  и  нормального распределения методом моментов.

; .

Следовательно, плотность вероятности предполагаемого нормального распределения имеет вид

Функция распределения предполагаемого нормального распределения имеет вид

Проверим гипотезу о распределении исследуемой случайной величины по нормальному закону с помощью критерия Пирсона:

, где .

Здесь  – теоретические частоты нормального распределения, ,  находим по таблице распределения функции .

середина интервала

частота

1

1,05

7

-0,203

-2,01

0,0529

5,24

2

1,15

20

-0,103

-1,02

0,2371

23,48

3

1,25

44

-0,003

-0,03

0,3988

39,50

4

1,35

21

0,097

0,96

0,2516

24,92

5

1,45

8

0,197

1,95

0,0596

5,90


Найдем наблюдаемое значение критерия .

частота

1

7

5,24

1,76

3,10

0,59

2

20

23,48

-3,48

12,14

0,52

3

44

39,50

4,50

20,24

0,51

4

21

24,92

-3,92

15,37

0,62

5

8

5,90

2,10

4,40

0,74

100

99,05

2,98

.

Число степеней свободы  определяют по формуле . По таблице критерия Пирсона находим: . Так как , то нет оснований отвергать гипотезу о нормальном распределении.

6) Построим доверительный интервал для математического ожидания при неизвестной дисперсии: .

В нашем случае , , , , .

  

Поставляя значения получим: .

Задача 2

Даны результаты наблюдений над некоторой двумерной случайной величиной.

  1.  Построить корреляционное поле,
  2.  Определить средние выборочные значения , ,
  3.  Определить несмещенную оценку для дисперсии Sх, Sy.
  4.  Определить коэффициент корреляции .
  5.  Найти эмпирическую функцию линейной регрессий  на  и  на , изобразить эти прямые на корреляционном поле.
  6.  Проверить гипотезу H0: =0 (принять уровень значимости а = 0,05).

х

у

0-2

2-4

4-6

6-8

8-10

5,5-8,5

2

4

8,5-11,5

3

4

6

11,5-14,5

1

8

3

2

14,5-17,5

2

9

5

17,5-20,5

3

5

7

2

20,5-23,5

8

4

1

Решение.

Определим одномерные законы

х

1

3

5

7

9

8

10

26

22

14

80

Определим одномерные законы

7

10

13

16

19

22

6

13

14

17

17

13

80

Составим корреляционную таблицу в условных вариантах, выбрав в качестве ложных нулей , . ,

       

 

-2

-1

0

1

2

-3

2

4

6

-2

3

4

6

13

-1

1

8

3

2

14

0

2

9

5

17

1

3

5

7

2

17

2

8

4

1

13

8

10

26

22

14

80

Найдем , .

= = 0,3

= = –0,19

Найдем , .

=  = 1,5

= = 2,36

Найдем  и .

= 1,19,  = 1,53


Найдем .

Построим таблицу и вычислим значения.

       

 

-2

-1

0

1

2

-3

2

2

-6

8

4

-12

10

-30

-2

0

3

-6

4

4

-8

12

6

-12

16

-32

-1

-1

1

-1

0

8

-8

3

3

-3

4

2

-2

6

-6

0

-2

2

0

0

9

0

6

6

0

4

0

1

-3

3

3

0

5

5

7

7

7

4

2

2

8

8

2

-16

8

16

-4

4

8

0

1

2

-20

-40

16

10

-7

-10

-24

-32

-10

0

-10

-48

-100.

Найдем выборочный коэффициент корреляции:

==  -0,66.

Корреляционный момент равен.

Найдем , , , .

,         ,

,             .

Найдем выборочные уравнения прямых линий регрессии  на  и  на .

и         .

.                   

Построим графики.

Задача 3

Предприятие выпускает два вида продукции А1, А2. Для этого требуется затратить такие производственные факторы, как сырье, физический и управленческий труд. Затраты ресурсов на единицу продукции каждого вида, ежедневный объем имеющихся ресурсов, а также прибыль на единицу продукции приведены.

Составить план ежедневного выпуска продукции, при котором получаемая прибыль будет максимальной.

Решение.

Обозначим  план выпуска продукции, показывающий, какие виды продукции и в каких количествах нужно производить, чтобы обеспечить максимальную прибыль от реализации.

Так как  – прибыль от реализации единицы продукции вида, прибыль реализованных  единиц будет равна , а общая прибыль . Это выражение – целевая функция, которую нужно максимизировать.

Так как  – расход -го вида сырья и ресурсов на изготовление  единиц продукции вида , то просуммировав расход -го сырья  и ресурсов на выпуск двух видов продукции, получим общий расход этого сырья, который не должен превосходить  единиц:

.

Чтобы искомый план был реален нужно наложить условие неотрицательности на объемы  выпуска продукции:  .

Таким образом, экономико-математическая модель задачи имеет вид:

Найти  

при ограничениях

Решим задачу графически.

Построим многоугольник решений. Построим прямые:

; ; .

Областью допустимых решений является треугольник .

Далее строим вектор  наискорейшего возрастания целевой функции – вектор градиентного направления.

Перпендикулярно этому вектору проводим линию уровня . Параллельным перемещением прямой , приходим к выводу, что функции достигает максимума в точке В(50, 0).

.

Предприятие получим максимальную прибыль равную 4200 ден. ед., если будет производить 50 ед. продукции А1, а продукцию А2 производить не будет.

Задача 4

На предприятии имеются рулоны материала длиной L = 6 м, которые необходимо разрезать на заготовки длиной l1=2,1, l2=2,3, l3=1,4 м в количестве р1 =600, р2=720,  р3 = 900 соответственно.

Необходимо составить оптимальный план раскройки материала, который обеспечивает минимальные отходы, при условии выполнения плана по выходу заготовок

Решение.

Составим математическую модель задачи.

Обозначим через хi количество рулонов разрезанных по i-ому варианту.

Длина заготовки

Варианты раскроя

Количество заготовок

1

2

3

4

5

6

2,1м

2

1

1

0

0

0

600

2,3м

0

0

1

2

0

1

720

1,4м

1

2

1

1

4

2

900

Остаток, м

0,4

1,1

0,2

0

0,4

0,9

Тогда суммарный объем доходов запишется в виде

Условия выполнения плана

Третье уравнение системы разделим на 4. В первое и второе уравнения добавим фиктивные переменные  и  соответственно.

Построим симплекс таблицу.

Базис

СБ

Свободный член

х1

х2

х3

х4

х5

х6

х7

х8

-0,4

-1,1

-0,2

0

-0,4

-0,9

х7

600

2

1

1

0

0

0

1

0

-

х8

720

0

0

1

2

0

1

0

1

360

х5

-0,4

225

0,25

0,5

0,25

0,25

1

0,25

0

0

900

-90

0,3

0,9

0,1

-0,1

0

0,8

0

0

М

-1320

-1

-1

-2

2

0

-1

0

0

Среди оценок есть отрицательная -0,1 (соответствует переменной х4). Введем ее в базис. Получим новую симплекс таблицу.

Базис

СБ

Свободный член

х1

х2

х3

х4

х5

х6

х7

х8

-0,4

-1,1

-0,2

0

-0,4

-0,9

х7

600

2

1

1

0

0

0

1

0

300

х4

0

360

0

0

0,5

1

0

0,5

0

0,5

-

х5

-0,4

135

0,25

0,5

0,125

0

1

0,125

0

-0,125

540

-54

0,3

0,9

0,15

0

0

0,85

0

0,05

М

-600

-2

-1

-1

0

0

0

0

1

Среди оценок есть отрицательная (соответствует переменной х1). Введем ее в базис. Получим новую симплекс таблицу.

Базис

СБ

Свободный член

х1

х2

х3

х4

х5

х6

х7

х8

-0,4

-1,1

-0,2

0

-0,4

-0,9

Х1

-0,4

300

1

0,5

0,5

0

0

0

0,5

0

х4

0

360

0

0

0,5

1

0

0,5

0

0,5

х5

-0,4

60

0

0,375

0

0

1

0,125

-0,125

-0,125

-144

0

0,75

0

0

0

0,85

0,15

0,05

М

0

0

0

0

0

0

0

1

1

Среди оценок нет отрицательных.

Оптимальный план (300; 0; 0; 360; 60; 0), при этом Z = 144 м.

По первому варианту раскроя нужно раскроить 300 рулонов. По четвертому – 360 рулонов и по пятому варианту 60 рулонов. При этом отходы будут минимальными и составят 144 м.

 

Другие работы

70526. Політичний імідж 58.2 KB
  Розробки з іміджу ще найдуть своїх вдячних наслідників і у нас. При цьому симпатії до особистості кандидата мають істотний вплив на електоральну поведінку а ці симпатії залежать саме від іміджу політичного лідера. Вміле створення такого іміджу часто відіграє вирішальну роль у політиці що не раз було підтверджено практикою. Формування іміджу політичного лідера і політичної партії в українській практичній політології має певні особливості.
70527. Вчення Локка про державу і право 15.99 KB
  Он согласился установить конституционную монархию что открывало и закрепляло реальный доступ крупной буржуазии и обуржуазившемуся дворянству к управлению делами государства.Фильмера и твердо отклонил концепции абсолютности и неограниченности власти государства. По принятому тогда обыкновению и эта доктрина начиналась с вопроса о возникновении государства. Историкофактологическая проблема происхождение государства ставилась им как форма решения проблемы иной нормативнотеоретической: какими должны быть организационные этические и...
70528. Курсовая Оценка и выявление направлений повышения качества товара 857.16 KB
  Последовательность оценки уровня качества товара 3. Главные аспекты качества продукции 4. Показатели качества продукции 5.
70529. Виханский ОС Стратегическое управление - М Гардарика - с 1.8 MB
  ISBN 5776200555 Стратегическое управление рассматриваемое как деятельность высшего руководства по управлению организацией в конкурентной рыночной среде является важнейшей составляющей жизни современной деловой организации. В учебнике рассматривается реализация стратегического управления выработка и осуществление стратегии в трех ключевых сферах: в сфере развития и поведения во внешней среде в сфере создаваемого продукта в сфере персонала организации. Однако если речь идет о стратегическом управлении важно понимать с самого начала...
70530. Контрольная по истории России 46.78 KB
  В истории России Л. Попробуйте дать примеры социологизаторского цивилизационный презентистского и герменевтического подходов современных историков к изучению истории России. раздвоение всей совокупности и всех видов человеческого бытия а в России – преимущественное стремление к ценности бытия внутреннего и внешнего общественного и частного умозрительного и житейского и т.говорить о завоевании России монголами нелепо потому что монголы в 1249 году ушли из России и вопрос о взаимоотношениях между Великим монгольским Улусом и Великим...
70531. Первая российская революция - г 19.73 KB
  Причины первой российской революции4 2. Ход характер и движущие силы революции. Политическая жизнь страны в годы революции и ее итоги. Для этого необходимо выявить ряд задач: рассмотреть причины революции ход характер ее движущие силы и итоги.
70532. Добреньков ВИ И по закону и по справедливости убийство должно караться смертной казнью 41.36 KB
  142 162 Владимир Добреньков И по закону и по справедливости убийство должно караться смертной казнью Казнить нельзя помиловать. Требования отмены моратория на смертную казнь Сегодня в российском обществе все громче звучат голоса за отмену моратория на смертную казнь. Представители интеллигенции и деловых кругов широких масс населения и специалистов говорят о том что мораторий на смертную казнь в нашей стране сегодня – это не столько иллюстрация ее цивилизованности и близости западному миру сколько фактор способствующий росту...
70533. Уголовный прцесс РФ 585.75 KB
  Однако он намного лучше чем учебник под редакцией Гуценко и имея на руках этот учебник и новый УПК вы сможете уверенно подготовиться к экзамену. 2 УПК РСФСР ст. 1 УПК т. 2 УПК1.
70534. Защита прав ИС 11.03 KB
  Основы управления интеллектуальной собственностью Защита прав авторов и правообладателей На каждом этапе жизненного цикла ОИС могут возникать споры субъектов ИС между собой и с другими заинтересованными лицами. Обжалование решения патентного органа по результатам экспертизы заявки: при несогласии с решением патентного органа по результатам экспертизы заявки на выдачу охранного документа на ОПС заявитель вправе подать мотивированную жалобу ссылки на законодательство доказательства противопоставляемые материалы и т. Соблюдение прав ИС...
загрузка...