12405

.Построить гистограмму относительных частот.

Контрольная

Найдем объем выборки . Найдем эмпирическую функцию распределения: , – число вариант меньших , – объем выборки. Построим ее график Найдем числовые характеристики выборки Найдем среднее арифметическое . Дисперсию найдем по формуле: .

2013-08-13

264.12 KB

0 чел.


Чтобы скачать работу - расскажи о ней в социальной сети с помощью кнопок.

Задача 1

1. Построить гистограмму относительных частот.

2. Найти эмпирическую функцию распределения и построить ее график.

3. Найти числовые характеристики выборки: выборочное среднее, выборочную дисперсию, выборочное среднее квадратическое отклонение.

4. Найти точечные оценки параметров нормального распределения (предполагается, что исследуемая величина имеет нормальное распределение), записать плотность вероятности и функцию распределения.

5. Проверить согласие эмпирической функции распределения с модельной нормальной функцией распределения при помощью критерия   (Пирсона) (уровень значимости  = 0,05).

6. Найти доверительный интервал для математического ожидания (доверительную вероятность принять равной 0,95).

Даны результаты измерения объемного выхода (в %) коротких досок (1-1,5 м) из бревен листовых пород.

,%

1-1,1

1,1-1,2

1,2-1,3

1,3-1,4

1,4-1,5

7

20

44

21

8

Решение.

Найдем объем выборки .

Запишем частичные интервалы, а также частоты в них.

интервал

1-1,1

1,1-1,2

1,2-1,3

1,3-1,4

1,4-1,5

частота

7

20

44

21

8

Относительная частота

Построим гистограмму.

2. Найдем эмпирическую функцию распределения: ,

– число вариант меньших ,  – объем выборки.

Построим ее график

Найдем числовые характеристики выборки

Найдем среднее арифметическое .

Дисперсию найдем по формуле: .

Можно воспользоваться формулой

Полученные данные сведем в таблицу.

[xi; xi+1)

середина интервала

частота

1

[1;

1,1)

1,05

7

7,35

0,2885

2

[1,1;

1,2)

1,15

20

23

0,2122

3

[1,2;

1,3)

1,25

44

55

0,0004

4

[1,3;

1,4)

1,35

21

28,35

0,1976

5

[1,4;

1,5]

1,45

8

11,6

0,3105

100

125,3

1,0091

Таким образом имеем: , .

Среднее квадратическое отклонение .

5) Вид гистограммы и полигона относительных частот напоминает нормальную кривую. Поэтому, можно предположить, что распределение является нормальным.

7) Плотность вероятности нормального распределения имеет вид

Найдем точеные оценки параметров  и  нормального распределения методом моментов.

; .

Следовательно, плотность вероятности предполагаемого нормального распределения имеет вид

Функция распределения предполагаемого нормального распределения имеет вид

Проверим гипотезу о распределении исследуемой случайной величины по нормальному закону с помощью критерия Пирсона:

, где .

Здесь  – теоретические частоты нормального распределения, ,  находим по таблице распределения функции .

середина интервала

частота

1

1,05

7

-0,203

-2,01

0,0529

5,24

2

1,15

20

-0,103

-1,02

0,2371

23,48

3

1,25

44

-0,003

-0,03

0,3988

39,50

4

1,35

21

0,097

0,96

0,2516

24,92

5

1,45

8

0,197

1,95

0,0596

5,90


Найдем наблюдаемое значение критерия .

частота

1

7

5,24

1,76

3,10

0,59

2

20

23,48

-3,48

12,14

0,52

3

44

39,50

4,50

20,24

0,51

4

21

24,92

-3,92

15,37

0,62

5

8

5,90

2,10

4,40

0,74

100

99,05

2,98

.

Число степеней свободы  определяют по формуле . По таблице критерия Пирсона находим: . Так как , то нет оснований отвергать гипотезу о нормальном распределении.

6) Построим доверительный интервал для математического ожидания при неизвестной дисперсии: .

В нашем случае , , , , .

  

Поставляя значения получим: .

Задача 2

Даны результаты наблюдений над некоторой двумерной случайной величиной.

  1.  Построить корреляционное поле,
  2.  Определить средние выборочные значения , ,
  3.  Определить несмещенную оценку для дисперсии Sх, Sy.
  4.  Определить коэффициент корреляции .
  5.  Найти эмпирическую функцию линейной регрессий  на  и  на , изобразить эти прямые на корреляционном поле.
  6.  Проверить гипотезу H0: =0 (принять уровень значимости а = 0,05).

х

у

0-2

2-4

4-6

6-8

8-10

5,5-8,5

2

4

8,5-11,5

3

4

6

11,5-14,5

1

8

3

2

14,5-17,5

2

9

5

17,5-20,5

3

5

7

2

20,5-23,5

8

4

1

Решение.

Определим одномерные законы

х

1

3

5

7

9

8

10

26

22

14

80

Определим одномерные законы

7

10

13

16

19

22

6

13

14

17

17

13

80

Составим корреляционную таблицу в условных вариантах, выбрав в качестве ложных нулей , . ,

       

 

-2

-1

0

1

2

-3

2

4

6

-2

3

4

6

13

-1

1

8

3

2

14

0

2

9

5

17

1

3

5

7

2

17

2

8

4

1

13

8

10

26

22

14

80

Найдем , .

= = 0,3

= = –0,19

Найдем , .

=  = 1,5

= = 2,36

Найдем  и .

= 1,19,  = 1,53


Найдем .

Построим таблицу и вычислим значения.

       

 

-2

-1

0

1

2

-3

2

2

-6

8

4

-12

10

-30

-2

0

3

-6

4

4

-8

12

6

-12

16

-32

-1

-1

1

-1

0

8

-8

3

3

-3

4

2

-2

6

-6

0

-2

2

0

0

9

0

6

6

0

4

0

1

-3

3

3

0

5

5

7

7

7

4

2

2

8

8

2

-16

8

16

-4

4

8

0

1

2

-20

-40

16

10

-7

-10

-24

-32

-10

0

-10

-48

-100.

Найдем выборочный коэффициент корреляции:

==  -0,66.

Корреляционный момент равен.

Найдем , , , .

,         ,

,             .

Найдем выборочные уравнения прямых линий регрессии  на  и  на .

и         .

.                   

Построим графики.

Задача 3

Предприятие выпускает два вида продукции А1, А2. Для этого требуется затратить такие производственные факторы, как сырье, физический и управленческий труд. Затраты ресурсов на единицу продукции каждого вида, ежедневный объем имеющихся ресурсов, а также прибыль на единицу продукции приведены.

Составить план ежедневного выпуска продукции, при котором получаемая прибыль будет максимальной.

Решение.

Обозначим  план выпуска продукции, показывающий, какие виды продукции и в каких количествах нужно производить, чтобы обеспечить максимальную прибыль от реализации.

Так как  – прибыль от реализации единицы продукции вида, прибыль реализованных  единиц будет равна , а общая прибыль . Это выражение – целевая функция, которую нужно максимизировать.

Так как  – расход -го вида сырья и ресурсов на изготовление  единиц продукции вида , то просуммировав расход -го сырья  и ресурсов на выпуск двух видов продукции, получим общий расход этого сырья, который не должен превосходить  единиц:

.

Чтобы искомый план был реален нужно наложить условие неотрицательности на объемы  выпуска продукции:  .

Таким образом, экономико-математическая модель задачи имеет вид:

Найти  

при ограничениях

Решим задачу графически.

Построим многоугольник решений. Построим прямые:

; ; .

Областью допустимых решений является треугольник .

Далее строим вектор  наискорейшего возрастания целевой функции – вектор градиентного направления.

Перпендикулярно этому вектору проводим линию уровня . Параллельным перемещением прямой , приходим к выводу, что функции достигает максимума в точке В(50, 0).

.

Предприятие получим максимальную прибыль равную 4200 ден. ед., если будет производить 50 ед. продукции А1, а продукцию А2 производить не будет.

Задача 4

На предприятии имеются рулоны материала длиной L = 6 м, которые необходимо разрезать на заготовки длиной l1=2,1, l2=2,3, l3=1,4 м в количестве р1 =600, р2=720,  р3 = 900 соответственно.

Необходимо составить оптимальный план раскройки материала, который обеспечивает минимальные отходы, при условии выполнения плана по выходу заготовок

Решение.

Составим математическую модель задачи.

Обозначим через хi количество рулонов разрезанных по i-ому варианту.

Длина заготовки

Варианты раскроя

Количество заготовок

1

2

3

4

5

6

2,1м

2

1

1

0

0

0

600

2,3м

0

0

1

2

0

1

720

1,4м

1

2

1

1

4

2

900

Остаток, м

0,4

1,1

0,2

0

0,4

0,9

Тогда суммарный объем доходов запишется в виде

Условия выполнения плана

Третье уравнение системы разделим на 4. В первое и второе уравнения добавим фиктивные переменные  и  соответственно.

Построим симплекс таблицу.

Базис

СБ

Свободный член

х1

х2

х3

х4

х5

х6

х7

х8

-0,4

-1,1

-0,2

0

-0,4

-0,9

х7

600

2

1

1

0

0

0

1

0

-

х8

720

0

0

1

2

0

1

0

1

360

х5

-0,4

225

0,25

0,5

0,25

0,25

1

0,25

0

0

900

-90

0,3

0,9

0,1

-0,1

0

0,8

0

0

М

-1320

-1

-1

-2

2

0

-1

0

0

Среди оценок есть отрицательная -0,1 (соответствует переменной х4). Введем ее в базис. Получим новую симплекс таблицу.

Базис

СБ

Свободный член

х1

х2

х3

х4

х5

х6

х7

х8

-0,4

-1,1

-0,2

0

-0,4

-0,9

х7

600

2

1

1

0

0

0

1

0

300

х4

0

360

0

0

0,5

1

0

0,5

0

0,5

-

х5

-0,4

135

0,25

0,5

0,125

0

1

0,125

0

-0,125

540

-54

0,3

0,9

0,15

0

0

0,85

0

0,05

М

-600

-2

-1

-1

0

0

0

0

1

Среди оценок есть отрицательная (соответствует переменной х1). Введем ее в базис. Получим новую симплекс таблицу.

Базис

СБ

Свободный член

х1

х2

х3

х4

х5

х6

х7

х8

-0,4

-1,1

-0,2

0

-0,4

-0,9

Х1

-0,4

300

1

0,5

0,5

0

0

0

0,5

0

х4

0

360

0

0

0,5

1

0

0,5

0

0,5

х5

-0,4

60

0

0,375

0

0

1

0,125

-0,125

-0,125

-144

0

0,75

0

0

0

0,85

0,15

0,05

М

0

0

0

0

0

0

0

1

1

Среди оценок нет отрицательных.

Оптимальный план (300; 0; 0; 360; 60; 0), при этом Z = 144 м.

По первому варианту раскроя нужно раскроить 300 рулонов. По четвертому – 360 рулонов и по пятому варианту 60 рулонов. При этом отходы будут минимальными и составят 144 м.

 

Другие работы

6329. АНАЛИЗ РАЗВИТИЯ ОТРАСЛИ ПАЕВЫХ ИНВЕСТИЦИОННЫХ ФОНДОВ В РОССИИ 613.81 KB
  Лимит доверия зарубежных инвесторов к России, на наш взгляд, себя исчерпал. Российский фондовый рынок зарекомендовал себя как сверх концентрированный, волатильный, обладающий недостаточной прозрачностью. В марте 2001 г. в рейтинге журнала Euromoney фондовый рынок России занимал 95 место по уровню рыночного риска в мире
6330. Технический анализ и его роль в принятии инвестиционных решений 3.41 MB
  Оба метода пытаются решить одну и ту же проблему: определить направление дальнейшего движения цены, но подходят к ней с разных сторон. Фундаменталисты изучают причины, движущие рынком, а технические аналитики - эффект. Фундаменталист основывается на обычной логике и постоянно ищет причину того или иного изменения цен, предполагает всестороннее рассмотрение экономико
6331. Построение стратегии индивидуального инвестирования на российском рынке акций 1.12 MB
  Эффективное управление инвестициями является важной, но достаточно сложной задачей для любого инвестора. Чем меньше приходилось работать инвестору с фондовым рынком в обычной жизни, тем труднее эта задача. Повышение уровня знаний инвесторов в области операций с ценными бумагами – важная государственная задача. Особенно это актуально в период проведения в России пенсионной реформы
6332. Иностранные инвесторы на российском фондовом рынке 933.53 KB
  Темой данной работы является деятельность иностранных инвесторов на российском фондовом рынке. Данная тема представляет интерес и является актуальной в контексте современного экономического развития России. Курс на удвоение ВВП, улучшения качества жизни невозможен без мощного развития производственного потенциала. А из выступлений представителей органов власти и руководителей предприятий мы
6333. Оценка стоимости компании методом реальных опционов 567.34 KB
  В связи с этим данная сфера требует анализа традиционных подходов и методов оценки, а также выявления и внедрения новых альтернативных методов. Предметом исследования дипломной работы является оценка стоимости компаний и инвестиционных проектов методом реальных опционов с позиций собственников компаний и инициаторов проекта, как основных участников
6334. Программный трейдинг на рынке акций 1.07 MB
  Исследуемая тема актуальна, так как российский фондовый рынок относится к числу развивающихся рынков, поэтому понятие программного (системного) трейдинга недостаточно освещено российскими авторами и недостаточно популярно среди российских трейдеров. Вместе с тем, в странах с развитым фондовым рынком трейдерами широко используется системный подход для обеспечения постоянных положительных результатов торговли
6335. Оценка эффективности инструментов доверительного управления 604.21 KB
  На данный момент отрасль доверительного управления является одной из самых быстро развивающихся. По оценочным данным Национальной лиги управляющих, количество пайщиков за 2004 год более чем утроилось и достигло 68 тыс. человек. 7 лет назад в России работало 20 паевых инвестиционных фондов, которыми управляли 16 компаний. К концу 2004 года уже насчитывалось 283 фонда и 103 управляющие компании
6336. СЕКЬЮРИТИЗАЦИЯ АКТИВОВ: ЗАРУБЕЖНЫЙ ОПЫТ И РОССИЙСКАЯ ПРАКТИКА 1.18 MB
  Секьюритизация активов. Этот инструмент уже в начале 90-х гг. прошлого века был признан двигателем экономического роста многих стран развитого мира, а в США назван «алхимией финансов». В России же до сих пор подобное словосочетание вызывает лишь смутные ассоциации. С одной стороны, вопросы секьюритизации активов становятся всё больше «на слуху»:
6337. Организация и проблемы коллективного инвестирования 1.21 MB
  В настоящее время перед российской экономикой стоит непростая задача. К 2010 г. Россия должна удвоить свой внутренний валовой продукт и одновременно существенным образом перестроить структуру производства, резко увеличив долю обрабатывающих отраслей, в том числе высокотехнологичных и наукоемких производств.
загрузка...