12405

.Построить гистограмму относительных частот.

Контрольная

Найдем объем выборки . Найдем эмпирическую функцию распределения: , – число вариант меньших , – объем выборки. Построим ее график Найдем числовые характеристики выборки Найдем среднее арифметическое . Дисперсию найдем по формуле: .

2013-08-13

264.12 KB

0 чел.

Задача 1

1. Построить гистограмму относительных частот.

2. Найти эмпирическую функцию распределения и построить ее график.

3. Найти числовые характеристики выборки: выборочное среднее, выборочную дисперсию, выборочное среднее квадратическое отклонение.

4. Найти точечные оценки параметров нормального распределения (предполагается, что исследуемая величина имеет нормальное распределение), записать плотность вероятности и функцию распределения.

5. Проверить согласие эмпирической функции распределения с модельной нормальной функцией распределения при помощью критерия   (Пирсона) (уровень значимости  = 0,05).

6. Найти доверительный интервал для математического ожидания (доверительную вероятность принять равной 0,95).

Даны результаты измерения объемного выхода (в %) коротких досок (1-1,5 м) из бревен листовых пород.

,%

1-1,1

1,1-1,2

1,2-1,3

1,3-1,4

1,4-1,5

7

20

44

21

8

Решение.

Найдем объем выборки .

Запишем частичные интервалы, а также частоты в них.

интервал

1-1,1

1,1-1,2

1,2-1,3

1,3-1,4

1,4-1,5

частота

7

20

44

21

8

Относительная частота

Построим гистограмму.

2. Найдем эмпирическую функцию распределения: ,

– число вариант меньших ,  – объем выборки.

Построим ее график

Найдем числовые характеристики выборки

Найдем среднее арифметическое .

Дисперсию найдем по формуле: .

Можно воспользоваться формулой

Полученные данные сведем в таблицу.

[xi; xi+1)

середина интервала

частота

1

[1;

1,1)

1,05

7

7,35

0,2885

2

[1,1;

1,2)

1,15

20

23

0,2122

3

[1,2;

1,3)

1,25

44

55

0,0004

4

[1,3;

1,4)

1,35

21

28,35

0,1976

5

[1,4;

1,5]

1,45

8

11,6

0,3105

100

125,3

1,0091

Таким образом имеем: , .

Среднее квадратическое отклонение .

5) Вид гистограммы и полигона относительных частот напоминает нормальную кривую. Поэтому, можно предположить, что распределение является нормальным.

7) Плотность вероятности нормального распределения имеет вид

Найдем точеные оценки параметров  и  нормального распределения методом моментов.

; .

Следовательно, плотность вероятности предполагаемого нормального распределения имеет вид

Функция распределения предполагаемого нормального распределения имеет вид

Проверим гипотезу о распределении исследуемой случайной величины по нормальному закону с помощью критерия Пирсона:

, где .

Здесь  – теоретические частоты нормального распределения, ,  находим по таблице распределения функции .

середина интервала

частота

1

1,05

7

-0,203

-2,01

0,0529

5,24

2

1,15

20

-0,103

-1,02

0,2371

23,48

3

1,25

44

-0,003

-0,03

0,3988

39,50

4

1,35

21

0,097

0,96

0,2516

24,92

5

1,45

8

0,197

1,95

0,0596

5,90


Найдем наблюдаемое значение критерия .

частота

1

7

5,24

1,76

3,10

0,59

2

20

23,48

-3,48

12,14

0,52

3

44

39,50

4,50

20,24

0,51

4

21

24,92

-3,92

15,37

0,62

5

8

5,90

2,10

4,40

0,74

100

99,05

2,98

.

Число степеней свободы  определяют по формуле . По таблице критерия Пирсона находим: . Так как , то нет оснований отвергать гипотезу о нормальном распределении.

6) Построим доверительный интервал для математического ожидания при неизвестной дисперсии: .

В нашем случае , , , , .

  

Поставляя значения получим: .

Задача 2

Даны результаты наблюдений над некоторой двумерной случайной величиной.

  1.  Построить корреляционное поле,
  2.  Определить средние выборочные значения , ,
  3.  Определить несмещенную оценку для дисперсии Sх, Sy.
  4.  Определить коэффициент корреляции .
  5.  Найти эмпирическую функцию линейной регрессий  на  и  на , изобразить эти прямые на корреляционном поле.
  6.  Проверить гипотезу H0: =0 (принять уровень значимости а = 0,05).

х

у

0-2

2-4

4-6

6-8

8-10

5,5-8,5

2

4

8,5-11,5

3

4

6

11,5-14,5

1

8

3

2

14,5-17,5

2

9

5

17,5-20,5

3

5

7

2

20,5-23,5

8

4

1

Решение.

Определим одномерные законы

х

1

3

5

7

9

8

10

26

22

14

80

Определим одномерные законы

7

10

13

16

19

22

6

13

14

17

17

13

80

Составим корреляционную таблицу в условных вариантах, выбрав в качестве ложных нулей , . ,

       

 

-2

-1

0

1

2

-3

2

4

6

-2

3

4

6

13

-1

1

8

3

2

14

0

2

9

5

17

1

3

5

7

2

17

2

8

4

1

13

8

10

26

22

14

80

Найдем , .

= = 0,3

= = –0,19

Найдем , .

=  = 1,5

= = 2,36

Найдем  и .

= 1,19,  = 1,53


Найдем .

Построим таблицу и вычислим значения.

       

 

-2

-1

0

1

2

-3

2

2

-6

8

4

-12

10

-30

-2

0

3

-6

4

4

-8

12

6

-12

16

-32

-1

-1

1

-1

0

8

-8

3

3

-3

4

2

-2

6

-6

0

-2

2

0

0

9

0

6

6

0

4

0

1

-3

3

3

0

5

5

7

7

7

4

2

2

8

8

2

-16

8

16

-4

4

8

0

1

2

-20

-40

16

10

-7

-10

-24

-32

-10

0

-10

-48

-100.

Найдем выборочный коэффициент корреляции:

==  -0,66.

Корреляционный момент равен.

Найдем , , , .

,         ,

,             .

Найдем выборочные уравнения прямых линий регрессии  на  и  на .

и         .

.                   

Построим графики.

Задача 3

Предприятие выпускает два вида продукции А1, А2. Для этого требуется затратить такие производственные факторы, как сырье, физический и управленческий труд. Затраты ресурсов на единицу продукции каждого вида, ежедневный объем имеющихся ресурсов, а также прибыль на единицу продукции приведены.

Составить план ежедневного выпуска продукции, при котором получаемая прибыль будет максимальной.

Решение.

Обозначим  план выпуска продукции, показывающий, какие виды продукции и в каких количествах нужно производить, чтобы обеспечить максимальную прибыль от реализации.

Так как  – прибыль от реализации единицы продукции вида, прибыль реализованных  единиц будет равна , а общая прибыль . Это выражение – целевая функция, которую нужно максимизировать.

Так как  – расход -го вида сырья и ресурсов на изготовление  единиц продукции вида , то просуммировав расход -го сырья  и ресурсов на выпуск двух видов продукции, получим общий расход этого сырья, который не должен превосходить  единиц:

.

Чтобы искомый план был реален нужно наложить условие неотрицательности на объемы  выпуска продукции:  .

Таким образом, экономико-математическая модель задачи имеет вид:

Найти  

при ограничениях

Решим задачу графически.

Построим многоугольник решений. Построим прямые:

; ; .

Областью допустимых решений является треугольник .

Далее строим вектор  наискорейшего возрастания целевой функции – вектор градиентного направления.

Перпендикулярно этому вектору проводим линию уровня . Параллельным перемещением прямой , приходим к выводу, что функции достигает максимума в точке В(50, 0).

.

Предприятие получим максимальную прибыль равную 4200 ден. ед., если будет производить 50 ед. продукции А1, а продукцию А2 производить не будет.

Задача 4

На предприятии имеются рулоны материала длиной L = 6 м, которые необходимо разрезать на заготовки длиной l1=2,1, l2=2,3, l3=1,4 м в количестве р1 =600, р2=720,  р3 = 900 соответственно.

Необходимо составить оптимальный план раскройки материала, который обеспечивает минимальные отходы, при условии выполнения плана по выходу заготовок

Решение.

Составим математическую модель задачи.

Обозначим через хi количество рулонов разрезанных по i-ому варианту.

Длина заготовки

Варианты раскроя

Количество заготовок

1

2

3

4

5

6

2,1м

2

1

1

0

0

0

600

2,3м

0

0

1

2

0

1

720

1,4м

1

2

1

1

4

2

900

Остаток, м

0,4

1,1

0,2

0

0,4

0,9

Тогда суммарный объем доходов запишется в виде

Условия выполнения плана

Третье уравнение системы разделим на 4. В первое и второе уравнения добавим фиктивные переменные  и  соответственно.

Построим симплекс таблицу.

Базис

СБ

Свободный член

х1

х2

х3

х4

х5

х6

х7

х8

-0,4

-1,1

-0,2

0

-0,4

-0,9

х7

600

2

1

1

0

0

0

1

0

-

х8

720

0

0

1

2

0

1

0

1

360

х5

-0,4

225

0,25

0,5

0,25

0,25

1

0,25

0

0

900

-90

0,3

0,9

0,1

-0,1

0

0,8

0

0

М

-1320

-1

-1

-2

2

0

-1

0

0

Среди оценок есть отрицательная -0,1 (соответствует переменной х4). Введем ее в базис. Получим новую симплекс таблицу.

Базис

СБ

Свободный член

х1

х2

х3

х4

х5

х6

х7

х8

-0,4

-1,1

-0,2

0

-0,4

-0,9

х7

600

2

1

1

0

0

0

1

0

300

х4

0

360

0

0

0,5

1

0

0,5

0

0,5

-

х5

-0,4

135

0,25

0,5

0,125

0

1

0,125

0

-0,125

540

-54

0,3

0,9

0,15

0

0

0,85

0

0,05

М

-600

-2

-1

-1

0

0

0

0

1

Среди оценок есть отрицательная (соответствует переменной х1). Введем ее в базис. Получим новую симплекс таблицу.

Базис

СБ

Свободный член

х1

х2

х3

х4

х5

х6

х7

х8

-0,4

-1,1

-0,2

0

-0,4

-0,9

Х1

-0,4

300

1

0,5

0,5

0

0

0

0,5

0

х4

0

360

0

0

0,5

1

0

0,5

0

0,5

х5

-0,4

60

0

0,375

0

0

1

0,125

-0,125

-0,125

-144

0

0,75

0

0

0

0,85

0,15

0,05

М

0

0

0

0

0

0

0

1

1

Среди оценок нет отрицательных.

Оптимальный план (300; 0; 0; 360; 60; 0), при этом Z = 144 м.

По первому варианту раскроя нужно раскроить 300 рулонов. По четвертому – 360 рулонов и по пятому варианту 60 рулонов. При этом отходы будут минимальными и составят 144 м.

 

Другие работы

60040. Язык телодвижений 745.82 KB
  7] Выражение Готовности у Сидячего Человека [7.3] Способы Выражения Принятия или Непринятия Человека в Свой Круг [14.1] Повышение Статуса Человека за Счет Манипуляций с Креслом [16. Кажется почти невероятным что более чем за миллион лет эволюции человека невербальные аспекты коммуникации начали серьезно изучаться только с начала шестидесятых годов а общественности стало известно об их существовании только после того как Юлий Фаст опубликовал свою книгу в 1970 году.
60041. ПСИХОЛОГИЯ МЕНЕДЖМЕНТА 777.69 KB
  В общем случае к отличительным особенностям профессиональной деятельности менеджера следует отнести появление некоторых не свойственных руководителям государственной экономики управленческих функций расширение их ответственности и прав в решении проблем организации. Практически все создаваемые у нас организации предпринимательского типа заинтересованы в грамотных профессионально подготовленных руководителях способных ориентироваться в финансовых юридических психологических и других вопросах при принятии управленческих решений способных...
60042. 11. Дисциплины распределения ресурсов. Примеры функционирования систем планирования и диспетчеризации 30.35 KB
  Примеры функционирования систем планирования и диспетчеризации Дисциплина распределения ресурсов складывается из дисциплины формирования очередей и дисциплины обслуживания. Система массового обслуживания СМОтеория правила об упрнии и распреднии ресурсов. Дисциплина обслуживания делится на системы со статическими приоритетами приоритеты назнач. Дисциплина обслуживания с абсолютными приоритетами предусматрет прерния обслуживя низкоприоритетной заявки при поступлении более приоритетной.
60043. Краткий вариант Джуринский А.Н. - История зарубежной педагогики 266.52 KB
  Примеры сравнительного описания состояния образования в различных странах можно найти в трудах Я. Процесс построения национальной системы образования в России и ее интеграции в европейские и мировые структуры требует прежде всего анализа состояния и тенденций развития образования как в России так и в мире. Предмет сравнительной педагогики: анализ и интерпретация педагогической практики и политики в области образования в разных странах мира в различных культурах. Сопоставление педагогических идей прошлого и настоящего: системное описание...
60044. Word3 Форматирование текста 48.47 KB
  Щелкните мышью на кнопке Открыть Open на панели инструментов Стандартная Stndrd. В списке файлов два раза подряд щелкните на имени файла Lesson2 чтобы открыть его. Щелкните на кнопке Сохранить Sve или нажмите клавишу Еnter . Если вы щелкните на кнопке Увеличить отступ Icrese Indent все строки выделенного абзаца или абзаца в котором находится текстовой курсор сдвинутся на одинаковое расстояние.
60045. Трудове право 2009 35 KB
  Предмет метод і система трудового права. Поняття трудового права як самостійної галузі права України. Предмет трудового права: трудові відносини що безпосередньо пов’язані з процесом праці та відносини що тісно пов’язані з трудовими відносинами або витікають з трудових відносин. Функції трудового права в сучасних умовах.
60046. Тема 04 НЕ 11 new Базисні інститути НЕ 46.27 KB
  Базисні інститути національної економіки ТЕМА 4 БАЗИСНІ ІНСТИТУТИ НАЦІОНАЛЬНОЇ ЕКОНОМІКИ Формування базисних інститутів в умовах трансформаційного періоду Базисні інститути економічної сфери Базисні інститути політичної сфери Теорія соціального вибору Динаміка зміни інститутів у трансформаційній економіці 1. Формування базисних інститутів в умовах трансформаційного періоду Базисні інститути національної економіки: економічні політичні в т. Ґрунтовний підхід до аналізу базисних інститутів дає концепція інституційних матриць....
60047. Кохановский В.П. - Философия и методология науки (Монография) 501.58 KB
  Кохановский ФИЛОСОФИЯ И МЕТОДОЛОГИЯ НАУКИ Учебник для высших учебных заведений аст ИЗДАТЕЛЬСТВО МОСКВА издательство РОСТОВНАДОНУ 1999 ББК Ю25 К75 Рецензенты: Доктор философских наук профессор Т. Философия и методология науки: Учебник для высших учебных заведений. ISBN 522200502Х Первый фундаментальный учебник по дисциплине Философия и методология науки подготовлен в соответствии с государственным образовательным стандартом высшего профессионального образования Госкомвуза РФ. Рассматривает специфику науки как системы знания формы...
60048. 13. Исследование работы двоично-десятичного счетчика 76.58 KB
  В состав лабораторного стенда входят: базовый лабораторный стенд; лабораторный модуль dLb13 для исследования работы двоичнодесятичного счетчика. Краткие теоретические сведения Счетчик с коэффициентом пересчета равным любому целому числу можно реализовать на основе двоичного счетчика путем ввода обратных связей для исключения запрещенных состояний. Например для счетчика на трех триггерах реализуется в пределах от 2 до 7 но при этом один или два триггера могут оказаться лишними.
загрузка...