12405

.Построить гистограмму относительных частот.

Контрольная

Найдем объем выборки . Найдем эмпирическую функцию распределения: , – число вариант меньших , – объем выборки. Построим ее график Найдем числовые характеристики выборки Найдем среднее арифметическое . Дисперсию найдем по формуле: .

2013-08-13

264.12 KB

0 чел.


Чтобы скачать работу - расскажи о ней в социальной сети с помощью кнопок.

Задача 1

1. Построить гистограмму относительных частот.

2. Найти эмпирическую функцию распределения и построить ее график.

3. Найти числовые характеристики выборки: выборочное среднее, выборочную дисперсию, выборочное среднее квадратическое отклонение.

4. Найти точечные оценки параметров нормального распределения (предполагается, что исследуемая величина имеет нормальное распределение), записать плотность вероятности и функцию распределения.

5. Проверить согласие эмпирической функции распределения с модельной нормальной функцией распределения при помощью критерия   (Пирсона) (уровень значимости  = 0,05).

6. Найти доверительный интервал для математического ожидания (доверительную вероятность принять равной 0,95).

Даны результаты измерения объемного выхода (в %) коротких досок (1-1,5 м) из бревен листовых пород.

,%

1-1,1

1,1-1,2

1,2-1,3

1,3-1,4

1,4-1,5

7

20

44

21

8

Решение.

Найдем объем выборки .

Запишем частичные интервалы, а также частоты в них.

интервал

1-1,1

1,1-1,2

1,2-1,3

1,3-1,4

1,4-1,5

частота

7

20

44

21

8

Относительная частота

Построим гистограмму.

2. Найдем эмпирическую функцию распределения: ,

– число вариант меньших ,  – объем выборки.

Построим ее график

Найдем числовые характеристики выборки

Найдем среднее арифметическое .

Дисперсию найдем по формуле: .

Можно воспользоваться формулой

Полученные данные сведем в таблицу.

[xi; xi+1)

середина интервала

частота

1

[1;

1,1)

1,05

7

7,35

0,2885

2

[1,1;

1,2)

1,15

20

23

0,2122

3

[1,2;

1,3)

1,25

44

55

0,0004

4

[1,3;

1,4)

1,35

21

28,35

0,1976

5

[1,4;

1,5]

1,45

8

11,6

0,3105

100

125,3

1,0091

Таким образом имеем: , .

Среднее квадратическое отклонение .

5) Вид гистограммы и полигона относительных частот напоминает нормальную кривую. Поэтому, можно предположить, что распределение является нормальным.

7) Плотность вероятности нормального распределения имеет вид

Найдем точеные оценки параметров  и  нормального распределения методом моментов.

; .

Следовательно, плотность вероятности предполагаемого нормального распределения имеет вид

Функция распределения предполагаемого нормального распределения имеет вид

Проверим гипотезу о распределении исследуемой случайной величины по нормальному закону с помощью критерия Пирсона:

, где .

Здесь  – теоретические частоты нормального распределения, ,  находим по таблице распределения функции .

середина интервала

частота

1

1,05

7

-0,203

-2,01

0,0529

5,24

2

1,15

20

-0,103

-1,02

0,2371

23,48

3

1,25

44

-0,003

-0,03

0,3988

39,50

4

1,35

21

0,097

0,96

0,2516

24,92

5

1,45

8

0,197

1,95

0,0596

5,90


Найдем наблюдаемое значение критерия .

частота

1

7

5,24

1,76

3,10

0,59

2

20

23,48

-3,48

12,14

0,52

3

44

39,50

4,50

20,24

0,51

4

21

24,92

-3,92

15,37

0,62

5

8

5,90

2,10

4,40

0,74

100

99,05

2,98

.

Число степеней свободы  определяют по формуле . По таблице критерия Пирсона находим: . Так как , то нет оснований отвергать гипотезу о нормальном распределении.

6) Построим доверительный интервал для математического ожидания при неизвестной дисперсии: .

В нашем случае , , , , .

  

Поставляя значения получим: .

Задача 2

Даны результаты наблюдений над некоторой двумерной случайной величиной.

  1.  Построить корреляционное поле,
  2.  Определить средние выборочные значения , ,
  3.  Определить несмещенную оценку для дисперсии Sх, Sy.
  4.  Определить коэффициент корреляции .
  5.  Найти эмпирическую функцию линейной регрессий  на  и  на , изобразить эти прямые на корреляционном поле.
  6.  Проверить гипотезу H0: =0 (принять уровень значимости а = 0,05).

х

у

0-2

2-4

4-6

6-8

8-10

5,5-8,5

2

4

8,5-11,5

3

4

6

11,5-14,5

1

8

3

2

14,5-17,5

2

9

5

17,5-20,5

3

5

7

2

20,5-23,5

8

4

1

Решение.

Определим одномерные законы

х

1

3

5

7

9

8

10

26

22

14

80

Определим одномерные законы

7

10

13

16

19

22

6

13

14

17

17

13

80

Составим корреляционную таблицу в условных вариантах, выбрав в качестве ложных нулей , . ,

       

 

-2

-1

0

1

2

-3

2

4

6

-2

3

4

6

13

-1

1

8

3

2

14

0

2

9

5

17

1

3

5

7

2

17

2

8

4

1

13

8

10

26

22

14

80

Найдем , .

= = 0,3

= = –0,19

Найдем , .

=  = 1,5

= = 2,36

Найдем  и .

= 1,19,  = 1,53


Найдем .

Построим таблицу и вычислим значения.

       

 

-2

-1

0

1

2

-3

2

2

-6

8

4

-12

10

-30

-2

0

3

-6

4

4

-8

12

6

-12

16

-32

-1

-1

1

-1

0

8

-8

3

3

-3

4

2

-2

6

-6

0

-2

2

0

0

9

0

6

6

0

4

0

1

-3

3

3

0

5

5

7

7

7

4

2

2

8

8

2

-16

8

16

-4

4

8

0

1

2

-20

-40

16

10

-7

-10

-24

-32

-10

0

-10

-48

-100.

Найдем выборочный коэффициент корреляции:

==  -0,66.

Корреляционный момент равен.

Найдем , , , .

,         ,

,             .

Найдем выборочные уравнения прямых линий регрессии  на  и  на .

и         .

.                   

Построим графики.

Задача 3

Предприятие выпускает два вида продукции А1, А2. Для этого требуется затратить такие производственные факторы, как сырье, физический и управленческий труд. Затраты ресурсов на единицу продукции каждого вида, ежедневный объем имеющихся ресурсов, а также прибыль на единицу продукции приведены.

Составить план ежедневного выпуска продукции, при котором получаемая прибыль будет максимальной.

Решение.

Обозначим  план выпуска продукции, показывающий, какие виды продукции и в каких количествах нужно производить, чтобы обеспечить максимальную прибыль от реализации.

Так как  – прибыль от реализации единицы продукции вида, прибыль реализованных  единиц будет равна , а общая прибыль . Это выражение – целевая функция, которую нужно максимизировать.

Так как  – расход -го вида сырья и ресурсов на изготовление  единиц продукции вида , то просуммировав расход -го сырья  и ресурсов на выпуск двух видов продукции, получим общий расход этого сырья, который не должен превосходить  единиц:

.

Чтобы искомый план был реален нужно наложить условие неотрицательности на объемы  выпуска продукции:  .

Таким образом, экономико-математическая модель задачи имеет вид:

Найти  

при ограничениях

Решим задачу графически.

Построим многоугольник решений. Построим прямые:

; ; .

Областью допустимых решений является треугольник .

Далее строим вектор  наискорейшего возрастания целевой функции – вектор градиентного направления.

Перпендикулярно этому вектору проводим линию уровня . Параллельным перемещением прямой , приходим к выводу, что функции достигает максимума в точке В(50, 0).

.

Предприятие получим максимальную прибыль равную 4200 ден. ед., если будет производить 50 ед. продукции А1, а продукцию А2 производить не будет.

Задача 4

На предприятии имеются рулоны материала длиной L = 6 м, которые необходимо разрезать на заготовки длиной l1=2,1, l2=2,3, l3=1,4 м в количестве р1 =600, р2=720,  р3 = 900 соответственно.

Необходимо составить оптимальный план раскройки материала, который обеспечивает минимальные отходы, при условии выполнения плана по выходу заготовок

Решение.

Составим математическую модель задачи.

Обозначим через хi количество рулонов разрезанных по i-ому варианту.

Длина заготовки

Варианты раскроя

Количество заготовок

1

2

3

4

5

6

2,1м

2

1

1

0

0

0

600

2,3м

0

0

1

2

0

1

720

1,4м

1

2

1

1

4

2

900

Остаток, м

0,4

1,1

0,2

0

0,4

0,9

Тогда суммарный объем доходов запишется в виде

Условия выполнения плана

Третье уравнение системы разделим на 4. В первое и второе уравнения добавим фиктивные переменные  и  соответственно.

Построим симплекс таблицу.

Базис

СБ

Свободный член

х1

х2

х3

х4

х5

х6

х7

х8

-0,4

-1,1

-0,2

0

-0,4

-0,9

х7

600

2

1

1

0

0

0

1

0

-

х8

720

0

0

1

2

0

1

0

1

360

х5

-0,4

225

0,25

0,5

0,25

0,25

1

0,25

0

0

900

-90

0,3

0,9

0,1

-0,1

0

0,8

0

0

М

-1320

-1

-1

-2

2

0

-1

0

0

Среди оценок есть отрицательная -0,1 (соответствует переменной х4). Введем ее в базис. Получим новую симплекс таблицу.

Базис

СБ

Свободный член

х1

х2

х3

х4

х5

х6

х7

х8

-0,4

-1,1

-0,2

0

-0,4

-0,9

х7

600

2

1

1

0

0

0

1

0

300

х4

0

360

0

0

0,5

1

0

0,5

0

0,5

-

х5

-0,4

135

0,25

0,5

0,125

0

1

0,125

0

-0,125

540

-54

0,3

0,9

0,15

0

0

0,85

0

0,05

М

-600

-2

-1

-1

0

0

0

0

1

Среди оценок есть отрицательная (соответствует переменной х1). Введем ее в базис. Получим новую симплекс таблицу.

Базис

СБ

Свободный член

х1

х2

х3

х4

х5

х6

х7

х8

-0,4

-1,1

-0,2

0

-0,4

-0,9

Х1

-0,4

300

1

0,5

0,5

0

0

0

0,5

0

х4

0

360

0

0

0,5

1

0

0,5

0

0,5

х5

-0,4

60

0

0,375

0

0

1

0,125

-0,125

-0,125

-144

0

0,75

0

0

0

0,85

0,15

0,05

М

0

0

0

0

0

0

0

1

1

Среди оценок нет отрицательных.

Оптимальный план (300; 0; 0; 360; 60; 0), при этом Z = 144 м.

По первому варианту раскроя нужно раскроить 300 рулонов. По четвертому – 360 рулонов и по пятому варианту 60 рулонов. При этом отходы будут минимальными и составят 144 м.

 

Другие работы

75985. деловое общение контрольная работа 13.32 KB
  Поэтому для каждых переговоров необходимо разрабатывать и применять специальную тактику и технику их ведения. В связи с разнообразием переговоров невозможно предложить их точную модель. Обобщенная схема их проведения имеет следующий вид I этап II этап III этап IV этап Подготовка переговоров Проведение переговоров Решение проблемы завершение переговоров Анализ итогов деловых переговоров Технология выбора стратегий и тактик в переговорном процессе всякий раз зависит от конкретных условий рынка предмета переговоров и его участников. Можно...
75986. Индивидуальные различия интеллекта 21.44 KB
  Более того идеи относительно происхождения и сущности интеллекта высказывались учеными еще в период донаучного развития психологии Гераклитом Платоном Аристотелем др. Проблема интеллекта и его развития несмотря на солидное количество теоретических концепций и моделей обилия диагностических методик является одновременно и разработанной и во многом еще загадочной областью психологического знания. Интерес к изучению интеллекта не ослабевает и обусловлен тем что его роль прослеживается во всех сферах жизнедеятельности человека: он...
75987. Шпоры Параллельное программирование 64.15 KB
  MPI: назначение и организация пакета MPI принципы построения программ для MPI. Классификация функций MPI. Функции MPI_BCST MPI_BRRIER MPI_GTHER MPI_SCTTER. В качестве такой программы может использоваться реализация MPI: MPI messge pssing interfce В настоящее время MPI реализуется стандартами: 1 MPI 1.
75988. Шпоры по бухгалтерскому учету промышленности 44.68 KB
  Задачи учета затрат на и калькулирование себестоимости промышленной продукции В процессе создания новых . В условиях товарноденежных отношений издержки выражающие затраты предприятия на выпуск и реализацию продукции в денежной форме принимают форму себестоимости. Как один из показателей эффективности производства она показывает во что обходится предприятию изготовление и сбыт продукции. Себестоимость широко применяется для экономического обоснования решений о производстве новой или прекращении выпуска устаревшей продукции для определения...
75989. Жизнь во Вселенной 5.74 KB
  Возникновение жизни во Вселенной 2. Проблема внеземных цивилизаций Возникновение жизни во Вселенной Несколько поколений ученый рассматривали астрономическую картину мира в основе которой лежат не только данные астрономических наблюдений теории и гипотезы но и важнейшие понятия и законы современной физики. Астрономическая картина мира это картина эволюционирующей Вселенной.
75990. Від Слюсаренко 78.65 KB
  Франковi було лише близько одинадцяти рокiв. Франко написав свiй перший вiрш. 26 липня 1875 року Iван Франко закiнчує Дрогобицьку гiмназiю i одержує атестат зрiлостi.
75991. Торговая марка в туризме 122.32 KB
  Левитт убедительно доказал что образ торговой марки в значительной степени влияет на решение о покупке промышленного оборудования. Вопервых розничная торговля и потребители готовы заплатить за сильные торговые марки высокую цену. Втретьих в силу лояльности к ним потребителей успешные торговые марки приносят стабильно высокую прибыль.
75992. Отчёт по практике товароведа продовольственных и непродовольственных товаров 1006.65 KB
  Имущество предприятия является собственностью предприятия. Участники предприятия имеют в отношении предприятия обязательственные права. Основной целью предприятия является осуществление деятельности направленной на получение прибыли для удовлетворения социальноэкономических потребностей членов трудового коллектив предприятия и его участников. В целях обеспечения деятельности предприятия создается уставный фонд в размере 1 023 000 Один миллион двадцать три тысячи белорусских рублей.
75993. Курсовая Экономика 191.78 KB
  Экономическая сущность товарооборота. Состав и структура товарооборота общественного питания . Анализ товарооборота и производственной программы комбината питания Юрист. Методика проведения анализа товарооборота.
загрузка...